skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flood, Peter J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. {"Abstract":["Stomach contents of fishes (1977-1981) and stable isotopes of fishes, invertebrates, and basal resources (1994) were collected from spikerush marsh, sawgrass ridge, and alligator pond habitats in Shark River Slough, Everglades National Park, Florida, USA. These data were used to quantify diet, trophic niche area, trophic position, basal resource use and how these metrics vary among size classes, seasons, and habitats. Data collection is complete. These data support Flood et al. (2023). Associated R code will be made available through Peter Flood's GitHub: https://github.com/pjflood/historic_everglades_aquatic_food_web. \n References:\n Flood, Peter J., William F. Loftus, and Joel C. Trexler. "Fishes in a seasonally pulsed wetland show spatiotemporal shifts in diet and trophic niche but not shifts in trophic position." Food Webs 34 (2023): e00265. https://doi.org/10.1016/j.fooweb.2022.e00265"]} 
    more » « less
  3. Irruptive or boom-and-bust population dynamics, also known as ‘outbreaks’, are an important phenomenon that has been noted in biological invasions at least since Charles Elton’s classic book was published in 1958. Community-level consequences of irruptive dynamics are poorly documented and invasive species provide excellent systems for their study. African Jewelfish (Rubricatochromis letourneuxi, “jewelfish”) are omnivores that demonstrate opportunistic carnivory, first reported in Florida in the 1960s and in Everglades National Park (ENP) in 2000. Twelve years after invasion in ENP, jewelfish underwent a 25-fold increase in density in one year. By 2016, jewelfish represented 25–50% of fish biomass. Using a 43-year fish community dataset at two sites (1978–2021), and a 25-year dataset of fish and invertebrate communities from the same drainage (1996–2021), with additional spatial coverage, we quantified differences in fish and invertebrate communities during different phases of invasion. During jewelfish boom, abundant, native cyprinodontiform fishes decreased in density and drove changes in community structure as measured by similarity of relativized abundance. Density of two species declined by > 70%, while four declined by 50–62%. Following the jewelfish bust, some species recovered to pre-boom densities while others did not. Diversity of recovery times produced altered community structure that lagged for at least four years after the jewelfish population declined. Community structure is an index of ecological functions such as resilience, productivity, and species interaction webs; therefore, these results demonstrate that irruptive population dynamics can alter ecological functions of ecosystems mediated by community structure for years following that population’s decline. 
    more » « less
  4. Abstract The Trophic Disruption Hypothesis (TDH) predicts that invasive species may cause native species to undergo trophic dispersion (change in trophic‐niche area) and trophic displacement (diet switching), predictably altering food‐web structure and biodiversity. In Everglades National Park, Florida, USA, African Jewelfish (Rubricatochromis letourneuxi) density has recently (2012–2017) undergone a boom‐bust cycle, linked to declines of native taxa and altered aquatic‐community composition that persist after the bust. Everglades restoration efforts seek to restore historic hydrologic conditions that may contribute to food‐web changes unfolding coincidentally with the jewelfish boom. We used complementary datasets of stomach contents and stable isotopes (δ15N and δ13C) to quantify pre‐ and post‐invasion consumer diets, trophic positions, trophic niches, basal energy use (autotrophic vs. heterotrophic), and energy fluxes to test assumptions of the TDH. The direction of change for these metrics from dry season to wet‐season post‐invasion (i.e., effect of adding water) was used as a proxy for the direction of effects from restored water delivery. For trophic shifts attributable to jewelfish invasion, we tested assumptions of the TDH. Comparing pre‐ versus post‐invasion for native consumers, we observed trophic displacement in 42% of species size classes (based on stomach contents), trophic dispersion for 57% of species (based on stable isotopes) and 54% of species size classes (based on stomach contents), and overall greater reliance on autotrophic energy. Altered trophic dynamics were more frequent pre‐ versus post‐invasion than among habitats or between seasons, and the direction of those responses was in the opposite direction of dry‐season to wet‐season differences and/or occurred at a higher frequency. Post‐invasion food‐web structure and function revealed increased relative abundance of mesopredators (including African Jewelfish) and reduced biomass and energy fluxes into and out of small fishes (e.g., Cyprinodontiformes). Our results show that African Jewelfish invasion is linked to altered spatiotemporal trophic dynamics and energy fluxes through declines in native fishes and invertebrates, which indirectly affected trophic relationships at the regional scale in the Everglades. As a result, we suggest extending the TDH to explicitly include the potential for invasive species to alter basal energy use, spatiotemporal trophic dynamics, and energy fluxes. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Abstract The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering. 
    more » « less
  6. Abstract The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef‐building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes ofAcropora cervicornisandA. palmatacorals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent inA. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates. 
    more » « less